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Understanding the mechanisms that control three-dimensional (3D) fluid transport is central to

many processes, including mixing, chemical reaction, and biological activity. Here a novel

mechanism for 3D transport is uncovered where fluid particles are kicked between streamlines near

a localized shear, which occurs in many flows and materials. This results in 3D transport similar to

Resonance Induced Dispersion (RID); however, this new mechanism is more rapid and mutually

incompatible with RID. We explore its governing impact with both an abstract 2-action flow and

a model fluid flow. We show that transitions from one-dimensional (1D) to two-dimensional

(2D) and 2D to 3D transport occur based on the relative magnitudes of streamline jumps in two

transverse directions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979666]

While some mechanisms for 3D particle transport (i.e.,

not confined to 1D curves or 2D surfaces) have been

uncovered, there is still much to be understood. We pro-

vide a general description of a novel mechanism for 3D

particle transport, and demonstrate it in a generic model

and a model fluid flow with periodically opening and clos-

ing valves. Under this mechanism particles are “kicked”

between streamlines when they experience highly local-

ized shear, such that after many visits to the shearing

region particles can visit a large extent of the domain. We

expect this 3D transport mechanism to occur in many

natural and engineered systems that exhibit localized

shear, including valved fluid flows, granular flows, and

flows with yield stress fluids.

I. INTRODUCTION

Understanding the mechanisms that control mixing and

transport is essential to many natural and engineered flows.

Significant insights into fluid mixing have been gained by

application of a dynamical systems approach, termed chaotic

advection,1,2 to a range of flows, including biological

flows,14 geo- and astro-physical flows,20,38 and industrial and

microfluidic flows.21

Fluid transport and mixing are well understood in 2D

chiefly due to the direct analogy between 2D incompressible

flows and Hamiltonian systems.1,25 In contrast, much less is

known about these mechanisms in 3D flows,39 because (a)

the Hamiltonian analogy breaks down at stagnation points,3

and (b) there is an explosion of topological complexity

between 2D and 3D space. In particular, little is known about

the mechanisms that drive transitions from 1D or 2D trans-

port (where particles are confined to curves or surfaces) to

3D transport, an essential ingredient for complete mixing in

3D systems, e.g., plankton blooms where 3D transport alters

macroscopic dynamics.27,34

One of the few clearly identified 3D transport mecha-

nisms is Resonance Induced Dispersion (RID),5–7,16,36,37

where fully 3D transport is produced by localized jumps

between 1D streamlines. This mechanism is most clearly

described in terms of slowly varying “action” variables I and

fast “angle” variables h. RID occurs in 2-action systems

(with two action and one angle variable), such that the

volume-preserving map x0 ¼ UTðxÞ corresponding to the

solution of the period-T advection equation x: ¼ vðx; tÞ is

transformed into

I01 ¼ I1 þ �g1ðI2; hÞ; I02 ¼ I2 þ �g2ðI01; hÞ;
h0 ¼ hþ XðI01; I02Þ þ �g3ðI01; I02Þ mod 1; (1)

where �� 1 and g1;2;3, respectively, represent perturbations

of I1; I2; h, corresponding to, e.g., weakly inertial flows.19,32

When XðI1; I2Þ is irrational, particle trajectories densely fill a

1D streamline and (1) reduces to a 2D Hamiltonian system

by averaging over h.36 However, when a fluid particle enters

a resonance region where XðI1; I2Þ is within � of a rational

number with small denominator,22 h slows (in the co-

rotating frame) to Oð�Þ: averaging breaks down, and fluid

particles are no longer confined to streamlines of constant I1,

I2. In the resonance region fluid particles can “jump” to a

new streamline. Fully 3D transport results from multiple

streamline jumps as fluid particles repeatedly visit resonance

regions.

In this study we uncover a 3D transport mechanism

termed “Localized Shear Induced Dispersion” (LSID), which

also causes streamline jumping. Unlike RID, LSID is driven

a)Electronic mail: lachlan.smith@northwestern.edu. Now at the Department
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Evanston, Illinois 60208, USA.
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by localized shear parallel to a surface S, either as a sharp

smooth or discontinuous deformation. Such localized smooth

shears can arise in general fluids—e.g., from the opening and

closing of valves11,31—and can become discontinuous in

shear-banding materials, such as colloidal suspensions, plas-

tics, polymers, and alloys.4,15,23 For solid matter, highly

localized shears occur in granular flows with thin flowing

layers, which become discontinuous in the theoretical limit

of an infinitesimal flowing layer.8,12,18,24,26,33

II. LOCALIZED SHEAR INDUCED DISPERSION

LSID occurs in 2-action systems of the form

I01 ¼ I1 þ f1ðI2; hÞ; I02 ¼ I2 þ f2ðI01; hÞ;
h0 ¼ hþ XðI01; I02Þ þ �g3ðI01; I02Þ mod 1; (2)

where f1;2 are functions that represent localized shear parallel

to I1;2. These functions are Oð�Þ everywhere except near a

surface S, where they are Oð1Þ. Fluid particles that shadow

streamlines of constant I1;2 are pushed onto a new streamline

by f1;2 with each approach to S, leading to fully 3D transport

over many encounters. Therefore, LSID and RID are mutu-

ally exclusive; RID cannot occur near S as the resulting

streamline jump would break the resonance.

Another distinguishing feature of LSID is the short-term

predictability of each streamline jump. In LSID the relatively

simple nature of f1;2 means that each streamline jump can be

predicted in the short-term. In contrast, in RID streamline

jumps are highly sensitive to particle locations in the reso-

nance region, and hence less predictable in the short-term.

While it is not surprising that the functions f1;2 in Eq. (2)

can yield 3D transport if they have sufficient magnitude, the

description Eq. (2) explains the underlying mechanism that

drives streamline jumping in many more complex systems.

For instance, the streamline jumping that occurs in tumbled

granular flows is driven by localized shears in a thin flowing

layer.8

A. LSID in a simple model

To illustrate the LSID mechanism we consider a 2-

action system described by Eq. (2) with

f1ðI2; hÞ ¼ a1ð1þ sinð2pI2Þ=2Þf ðh� 0:5Þ=d½ �;
f2ðI01; hÞ ¼ a2ð1þ sinð2pI01Þ=2Þf ðh� 0:5Þ=d½ �;
XðI01; I02Þ ¼ ðI01 þ I02Þ=2; (3)

where f1;2 are localized shears, generated by f ðxÞ ¼
tanhðkxÞPðxÞ where P(x) is the Gaussian distribution with

mean 0 and standard deviation 1/3, so that f is odd and

close to zero outside the interval ð�1; 1Þ. The function

f ½ðh� 0:5Þ=d� is shown in Fig. 1(b1, b2) for d ¼ 0:02 with

k¼ 5 (smooth) and k !1 (discontinuous); it is odd about

0.5 and rapidly decays to zero. The magnitudes of the local-

ized shears are controlled by a1;2, and “sharpness” is con-

trolled by k. In the limit as a1;2 ! 0 the map is integrable,

with particles confined to curves of constant I1;2. When a1;2

are both small no noticeable streamline jumps are produced,

FIG. 1. LSID in the system described by Eqs. (2) and (3). (a)–(h) 105 iterations of two tracer particles (maroon/dark gray and blue/light gray) for various

choices of a1;2. Left panels show 3D view with the region jh� 0:5j < d affected by the shear shown as green. Right panels show projections onto the (I1, I2)-

plane. (a) and (b) a1;2 ¼ 5� 10�4. (c) and (d) ða1; a2Þ ¼ ð0:05; 5� 10�4Þ. (e) and (f) ða1; a2Þ ¼ ð0:05; 5� 10�3Þ. (g) and (h) a1;2 ¼ 0:2. Also shown in inset

in (b) is f ½ðh� 0:5Þ=d� from Eq. (3) [(b1) k¼ 5: smooth, (b2) k!1: discontinuous] shown on the sub-domain h 2 ½0:45; 0:55�. The region jh� 0:5j < d ¼
0:02 is shown by the dashed lines.
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resulting in 1D transport [Figs. 1(a) and 1(b)]. Increasing

only a1 results in streamline jumping transverse to I1 and

hence 2D transport [Figs. 1(c) and 1(d)]. Increasing a2 also

results in streamline jumps transverse to I2, and hence 3D

transport [Figs. 1(e) and 1(f)]. In this case a1 ¼ 10a2 so the

magnitudes of streamline jumps transverse to I1 are larger

than those transverse to I2, resulting in slow dispersion trans-

verse to I2. Sufficiently large a1;2 results in rapid 3D trans-

port [Figs. 1(g) and 1(h)].

An important difference with RID is that under LSID

I1;2 “speed up” near S rather than h “slowing down” near a

resonant surface. This means that for LSID less time is

required near S for streamline jumps to occur, and hence 3D

transport is more rapid. This is demonstrated in the system

(3) by the rapid jumps (occurring after a single iteration) that

occur, e.g., jumps of 3% in I1 occur immediately and almost

continuously in Figs. 1(c)–1(f). Compared with RID, the

streamline jumps of LSID are faster, occur more frequently,

and are more predictable in the short-term.

B. LSID in a model fluid flow

We now consider a model fluid flow which exhibits

LSID as a result of discontinuous deformations analogous to

Fig. 1(b2) rather than the previous smooth model. The 3D

Reoriented Potential Mixing (3DRPM) flow28–30 consists of

a periodically reoriented 3D dipole flow contained within the

unit sphere [Fig. 2]. After each time period s (where s¼ 1 is

the emptying time of the sphere) the source/sink pair is

rotated about the y-axis by H ¼ 2p=3, resulting in typical

tracer particle trajectories shown in Fig. 2(c). Note that par-

ticles that reach the sink are immediately reinjected at the

source along the same streamline, as occurs between posi-

tions 4 and 5 in Fig. 2(c). The steady dipole flow that is peri-

odically reoriented is axisymmetric about the z-axis; it is a

potential flow (v ¼ rU) with potential function

U q; zð Þ ¼
1

4p
2

d�
� 2

dþ
þ log

dþ � zþ 1

d� þ zþ 1

� �� �
; (4)

where d6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðz71Þ2

q
are the distances from the poles

ð0; 0;61Þ and ðq; h; zÞ denote cylindrical coordinates. The

steady dipole flow also admits an axisymmetric Stokes

streamfunction

W q; zð Þ ¼
1� q2 � z2

4p
1

d�
þ 1

dþ

� �
; (5)

such that v ¼ ðr�WêhÞ=q, whose isosurfaces are shown in

Fig. 2(a). The 3DRPM flow is a 3D extension of the 2D RPM

flow,13,17,35 which exhibits discontinuous slip deformations

local to a curve of Lagrangian discontinuity due to the open-

ing, closing, and reorienting of the active dipole.31 In 2D

these discontinuous deformations significantly alter the clas-

sical Lagrangian dynamics that arise under smooth deforma-

tions (diffeomorphisms), leading to novel Lagrangian

coherent structures.31 Here we show that Lagrangian disconti-

nuities have an even greater impact in 3D systems, providing

a mechanism for 3D transport through LSID.

To describe the system in terms of action-angle coordi-

nates, we first note that in the limit as s! 0 (infinitely fast

dipole switching) the flow becomes steady and integrable,

with velocity v0 given by the average of the velocity over all

reoriented dipole positions [Fig. 3]. At low values of s
(<10�3) particles shadow the streamlines of v0, experiencing

only small perturbations transverse to the streamlines [Fig.

4(a)]. Therefore, the direction parallel to the streamlines

of v0 provides a natural angle variable h for the system, as

demonstrated in Fig. 4(a). We observe that for intermediate

values, 10�3 < s < 1, particles loosely adhere to axisymmet-

ric (about the y-axis) 2D surfaces, demonstrated by the 3D

Poincar�e section in Fig. 4(b) and the projected Poincar�e sec-

tions in Figs. 4(c) and 4(d). These surfaces define an action

variable I2, and are iso-surfaces of the axisymmetric function

I2 ¼ q0ðWðy;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
ÞÞ; (6)

where q0ðwÞ satisfies Wðq; 0Þ ¼ w, with equation

q0ðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2w2 � 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2w4 þ 2w2

q
þ 1

r
: (7)

The isosurfaces of I2 are shown as the gray curves in Figs.

4(c) and 4(d), where the isosurface I2 ¼ c intercepts the y-

axis at y¼ c. Hence, I2 ¼ 0 corresponds to the xz-plane and

I2 ¼ 1 corresponds to the outer hemisphere. The variable I2

is exactly conserved by the 3DRPM flow in the yz plane;

however, it is not exactly conserved elsewhere, as the

3DRPM flow does not admit an invariant. While not exactly

conserved, the projected Poincar�e sections in Fig. 4(c) and

the relatively small deviations observed in the typical time-

series shown in Fig. 5 (black curve) demonstrate that I2 is

approximately conserved by the 3DRPM flow for large num-

bers of periods at small and intermediate values of s. The

other action variable, I1, is defined as the direction orthogo-

nal to h and I2, demonstrated in Figs. 4(a) and 4(c).

FIG. 2. The 3DRPM flow. (a)

Isosurfaces of the Stokes streamfunc-

tion W of the steady dipole flow. Tracer

particles follow streamlines given by

the solid curves with constant stream-

function and azimuthal angle. (b) The

locations of the source (red) and sink

(blue) pairs for the 3DRPM flow with

H ¼ 2p=3. (c) A typical particle trajec-

tory with s ¼ 0:3.
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FIG. 4. Typical Poincar�e sections for

the 3DRPM flow. (a) The orbit of one

tracer particle with s ¼ 5� 10�4 after

N ¼ 105 flow periods. (b) s ¼ 0:02;
N ¼ 105. (c) and (d) Projections of

Poincar�e sections (different colors cor-

respond to different initial positions)

with s ¼ 0:328 onto ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

; yÞ
coordinates. Projections of the isosur-

faces of I2 are shown in gray, and the

isosurface I2 ¼ 0:5 is shown as dashed

black line. (c) N ¼ 103. (d) N ¼ 104.

(e) s¼ 5, N ¼ 105.

FIG. 5. Time series of the action vari-

able I2 of a particle over 1000 periods

of the 3DRPM flow for s ¼ 0:1159

(black). The zoned median of I2

(orange) with zones shown as vertical

gray lines shows jumps between quasi-

periodic states.

FIG. 3. The limit as s! 0. (a) The

velocity field v0 and contours of the

potential function shown in the xz-

plane. (b) Contours of the potential

function in the yþ hemisphere.
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Similar to the 2D RPM flow, the 3DRPM flow exhibits

Lagrangian discontinuities generated by the opening and

closing of the dipoles. Fluid [black rectangle AB in Fig. 6]

that straddles the surface of Lagrangian discontinuity S
[orange surface in Fig. 6 given by the set of points that reach

the dipole after s, i.e., tsink ¼ s] experiences a slip deforma-

tion shown in Figs. 6(a)–6(e). This has two components that

give the magnitudes of f1;2 in Eq. (2). In the 3DRPM flow

the slip parallel to I1, i.e., in the direction parallel to the iso-

surfaces of I2, is generally larger and is clearly observed in

Fig. 6(g), whereas the smaller slip parallel to I2 is observed

via the disjoint distribution in Fig. 6(f).

As a demonstration of the streamline jumping that can

generate 3D transport, Fig. 5 shows a typical time series of I2

for a particle in the 3DRPM flow with s ¼ 0:1159. The

underlying time series (black) displays jumps between

quasi-periodic states, with high frequency sharp peaks occur-

ring when the particle approaches a pole. Each quasi-

periodic state indicates loose confinement to an iso-surface

of I2, and the jumps between them correspond to inter-

surface, and hence 3D, transport. The iterations at which

jumps occur are found using the data zoning method of

Hawkins,9,10 dividing the dataset into segments (separated

by the gray vertical lines) that are approximately piecewise

constant. The magnitude of each jump, DI2, is found as the

difference between the medians of adjacent zoned segments.

Repeating this process, finding the jumps between quasi-

periodic states for 12 initial particle locations, each for

200 000 flow periods, a total of 64 090 jumps were detected,

and their locations in the spherical domain, shown projected

onto cylindrical ðq; zÞ-coordinates are shown in Fig. 7(c). It

is evident that the inter-surface jumps occur almost

FIG. 6. (a)–(e) The fluid cutting mechanism in the 3DRPM flow with s ¼ 0:041. (a) At t¼ 0 a rectangle of black fluid lies on the isosurface I2 ¼ 0:5 and con-

sists of elements A and B which straddle the orange surface consisting of locations that are advected onto the sink at t ¼ s. (b) At t ¼ s the region marked B

passes through the dipole and the region marked A does not. (c) and (d) The dipole is reoriented and the regions A and B move independently. (e) At t ¼ 4s
the fluid elements A and B approximately recombine, albeit with a discontinuous slip deformation. (f) Histograms of the action variable I2 for the fluid particles

A (dark gray) and B (light gray) shown in (e) at t ¼ 4s. At t¼ 0 all particles were on the isosurface I2 ¼ 0:5 (dashed black). (g) The same as (f) except with

s ¼ 0:01.

FIG. 7. Locations of the transverse

jumps DI2, projected onto cylindrical

ðq; zÞ-coordinates, detected by zoning

time series data for (a) s ¼ 1:024

�10�2, 190 initial particle locations,

(b) s ¼ 4:096� 10�2, 58 initial parti-

cle locations, and (c) s ¼ 0:1159, 12

initial particles locations. In each case

each particle is advected for 200 000

flow periods. The jump locations are

colored by the value of DI2. Also

shown in each is the projected isosur-

face tsink ¼ s (black), corresponding to

the Lagrangian discontinuity (the

orange surface in Fig. 6) and two pro-

jected isosurfaces of tsink that approxi-

mately contain the jump locations.
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exclusively near the surface of Lagrangian discontinuity (the

black curve), and with greater magnitude (closer to red or

purple) nearer the Lagrangian discontinuity. Considering the

jump locations for two smaller values of s, Figs. 7(a) and

7(b) show that inter-surface jumps generically occur near the

Lagrangian discontinuity, though with decreasing magnitude

as s decreases. Therefore, the rapid change in I2 generated

by the Lagrangian discontinuity is responsible for the intra-

surface jumps that lead to 3D dispersion via LSID.

Like a1;2 in Eq. (3), s acts as the control parameter for

LSID in the 3DRPM flow, controlling the cutting mechanism

demonstrated in Fig. 6 and hence the magnitudes of f1;2 in

the action-action-angle description Eq. (2). In the integrable

limit as s! 0; I1;2 are approximately conserved. At small

values of s, f1;2 remain Oð�Þ everywhere and hence particles

closely shadow streamlines of v0, as demonstrated by the

Poincar�e section in Fig. 4(a) which is analogous to Figs. 1(a)

and 1(b). Unlike in the limit as s! 0, particles are able to

drift away from the streamlines of constant I1;2 via small

jumps when they approach the Lagrangian discontinuity.

Increasing s leads to increases in the magnitudes of both f1
and f2, demonstrated for f2 by the increased separation

between the A and B components in Fig. 6(f) compared with

Fig. 6(g), and the increasing magnitude of the jumps DI2 in

Fig. 7. As f1 increases more rapidly than f2, this results in

approximately 2D transport [Fig. 4(b)] analogous to Figs.

1(c) and 1(d), with rapid intrasurface transport loosely con-

fined to isosurfaces of I2. A further increase in s results in

slow dispersion away from isosurfaces of I2 [Figs. 4(c) and

4(d)] analogous to Figs. 1(e) and 1(f), and eventually 3D

transport [Fig. 4(e)] analogous to Figs. 1(g) and 1(h). Here

the rapid streamline jumping produced by LSID is again

illustrated, occurring after a single full flow period 3s.

To further highlight the dominant role that Lagrangian

discontinuities play in generation of 3D transport, we track

a set of fluid particles that evenly covers the isosurface I2

¼ 0:5 [dashed black curve in Fig. 4(c)]. The motion parallel

to I2 after 20 flow periods is shown in Fig. 8(a), revealing a

discontinuous distribution composed of sharp interfaces

between positive and negative deviations DI2. These sharp

interfaces correspond exactly to the “web of preimages” of

the Lagrangian discontinuity (the set of reverse-time iter-

ates of the Lagrangian discontinuity, giving locations

where discontinuous deformation will occur in the

future31) shown as the black curves in Fig. 8(b). The distri-

bution of DI2 also highlights the predictable nature of the

streamline jumping process over a small number of reor-

ientations, where particles on each side of the web of prei-

mages are driven in opposite directions by f1;2 in (2). In the

long-term, chaotic motion can make it impossible to pre-

dict the transverse motion of particles in LSID, and the

associated decorrelation allows the accumulation of jumps

to be described as a diffusive-like drift, observed in Figs.

4(c)–4(e).

III. DISCUSSION

We have shown that 3D transport can arise via LSID in

flows with either smooth or discontinuous deformations in

the presence of localized shears that kick particles between

streamlines. These deformations can be linked theoretically

by regarding discontinuous deformation as the limit of an

increasingly sharp smooth deformation, as demonstrated by f
in (3) which is smooth for finite k but discontinuous in the

limit k!1 [Fig. 1(b2)]. For switched fluid flows with

valves, this connection between smooth and discontinuous

deformations can be observed by considering different

boundary conditions. By replacing the free-slip boundary

conditions in the 3DRPM flow with no-slip conditions, fluid

would not be cut at the dipole and would remain connected

by a thin filament. This means that the discontinuous slip

deformation is replaced by a localized smooth shear. In

either case LSID will be the primary source of 3D particle

transport.

FIG. 8. (a) Transverse displacement of particles evenly distributed on the

isosurface I2 ¼ 0:5 in the 3DRPM flow with s ¼ 0:041 after 20 iterations.

This isosurface is projected onto the xz-plane to aid clarity, and each initial

particle location is coloured according to the difference in I2 from 0.5 (DI2).

(b) The same as (a) with 20 preimages (solid black curves) of the curve

given by the intersection of the surface of Lagrangian discontinuity (orange

surface in Fig. 6) with the isosurface I2 ¼ 0:5, forming part of the web of

preimages of the Lagrangian discontinuity.
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IV. CONCLUSIONS

Localized shears that occur in a wide array of applica-

tions, including valved flows, granular flows, and shear-

banding materials, can produce LSID, a mechanism for 3D

particle transport. Under LSID, fluid particles are pushed to

a new streamline with each pass through a localized region

with high shear, leading to fully 3D transport over the ergo-

dic region after many passes near this surface. In both a 2-

action model and a valved flow transitions from 1D to 2D

transport and 2D to 3D transport result from transitions in

the magnitude of streamline jumps in two transverse direc-

tions as control parameters increase.

Further investigation is required to determine how

“sharp” shears need to be to produce LSID. Future studies

should also focus on other 2-action systems with localized

shears that are likely to experience LSID, to gain a better

understanding of the possible transport and mixing phenom-

ena it can produce. For instance, does the rate and type (dif-

fusive, sub-diffusive, etc.) of transverse particle drift depend

on the nature (e.g., discontinuous, smooth) of the functions

f1, f2 in Eq. (2)?
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